
International Journal of Theoretical Physics, VoL 36, No. 6, 1997 

Deformation of the Exterior Algebra [~(Mn) and the 
Yang-Baxter Equation 

M. Daoud,  1 Y. Hassouni ,  1 and E. H.  Tahri 1 

Received August 30, 1996 

We show that the deformation of the exterior algebra on a given manifold is 
related to the existence of the Yang-Baxter equation. We prove that this deformed 
algebra involves a differential operator generating the algebra. The obtained 
differential calculus is not commutative and we recover the classical one for the 
classical limit of the deformation parameters. The q-analogue of the Leibniz rule 
corresponding to the purposed differential operator is given. 

I .  I N T R O D U C T I O N  

The theory of  the quantum group has gained much attention from physi- 
cists and mathematicians (Drinfel'd, 1985; Manin, 1989). This concept of  
deformation is based on the explicit dependence of these algebras on a given 
matrix satisfying the Yang-Baxter  equation (YBE). It has been shown that 
the resolution of  this equation allows the definition of  a specific quantum 
algebra (or quantum group) having from the mathematical point of  view the 
Hopf  algebra structure. Another very large field of  research in the same sense 
has been devoted to the introduction of noncommutative geometry using the 
solutions (Woronovicz, 1989) of  the YBE. Many methods have been proposed 
to introduce a differential operator leading to a definition of  a consistent 
differential calculus. The physical applications of  these mathematical struc- 
tures have led in several directions, for example, generalized statistics (any- 
ons), low-dimensional condensed matter phenomena such as the fractional 
Hall effects (Lerda and Sciuto, 1993; Caracciolo and Monteiro, 1993; Daoud 
and Hassouni, 1996) and many other research fields. 
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The present work is devoted to the deformation of the exterior algebra 
on a given differential manifold Mn. We prove that this deformation is related 
to the existence of the Yang-Baxter equations as for the other deformed 
algebras appearing in the literature. The appearance of this equation is of 
mathematical order; in fact, we show that its presence is ensured by the 
associativity of the deformed wedge product of the exterior algebra. As in 
the usual geometry, the deformed exterior algebra involves a differential 
operator mapping thepth-order form to the (p + 1)th-order one. By proposing 
some particular solutions of the YBE, we show that this differential calculus 
is not commutative. This coincides in some sense with the work (Woronovicz, 
1989) in which a noncommutative differential calculus is introduced in another 
way. Indeed the space of the deformed one-forms can have the A-bimodule 
structure and the coordinates of a given point of Mn are seen to be the algebra 
A. We point out that this proposed noncommutative differential calculus 
recovers the classical one by taking the deformation parameters going to 
unity. We end this work by introducing the general form of the Leibniz rule 
corresponding to our differential operator d. 

The paper is organized as follows: In Section 2 we give a brief review 
of the deformation of the exterior algebra on a given vector space. We present 
its relation with the YBE. In Section 3 we generalize this study to the case 
of a given manifold M,. We introduce, using a particular solution of the 
YBE, a consistent differential operator. The final section is devoted to the 
introduction of the q-analogue of the Leibniz rule. 

2. BRIEF REVIEW ON THE DEFORMATION OF ~ ( V )  

Let V be a finite-dimensional vector space over C such that dimcV = 
n and (ei)i= 1 ...... an arbitrary basis. We designate by O-i]/=1 ...... the basis of the 
dual space V* of V, introduced to satisfy 

O-i(ej) = ~j (1) 

The family O-;I i=L...,n is nothing but an exterior one-form on V; the exterior 
product is then given by 

O-i A O-J = O-i ~ O-j __ O-j ~ O-i (2) 

We define the deformation of Ill(V) (El Hassouni et al., 1994) through a 
natural generalization of equation (2) as 

O-i ~ O-j : O-i ~ O-j --  A~to-~ @ O-l (3) 

with A~t the entries of some matrix A ~ Endc(V* | V*): 

A(o-i ~ o.j) = AiJkio-k (~ O-I (4) 
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The matrix A can be considered as a deformation candidate of the product 
^ appearing in equation (2). Indeed, one can recover this equality (classical 
case) if we substitute A by the permutation matrix P (Pill = gig{) in equation 
(3). This property allows us to imagine that A could depend on a given one 
or many complex parameters q's such that 

A~(q's = 1) = 8i8~, (5) 

To construct the algebra of exterior forms built up from the deformed 
wedge products, we have assumed that the general expression of an arbitrary 
deformed two-form is given by 

~qz) = ~ij0.i 7~ 0.J (6) 

We denote by { 0.i X 0.J, i, j = 1 . . . . .  n } the set of the basis of vector space 
~2)(V) of all deformed two-forms constructed via the product X. 

It is obvious to remark that the antisymmetry property appearing for 
the wedge product in the classical limit (A ---) P) is broken for A 4= P, i.e., 
0.i ~ 0.j :~: __0.j ~ 0. i  

Seeing that 0.i ~ O. j belongs to T(V) (the tensor algebra on V), its 
composition with another element of Oq(V) by A is introduced through the 
definition of the overlapping between the two operations X and | as 
(0-i ~ o-j) ~k 0-k = 0-i ~ 0.j ~ r -- A~km0.i @ ~ @ 0.,n + Ajk Ail ~.n z r.lmZ XnpU ~ 0-P ~ 0 "m 

(7a) 

and 

0-i ~ (0-j @ ok) : 0.i @ 0-j @ o.k __ Ai/m0.l @ 0-m t~ 0-k -F A~,,A~ka" | o-p | O "m 

(7b) 

The plus and minus signs appearing in these equalities are conventionally 
related to the number of A. In compact simple form (El Hassouni et al., 
1994) we rewrite equations (7) as follows: 

(0.1 | 0.2) X 0.3 = (E - A23 + A23AI2)0.1 (~ 0.2 ~) 0.3 (8a) 

0.1 ~ (0.2 (~ 0.3) = (E - AI2 + A23AI2)0.1 @ 0.2 @ 0.3 (8b) 

where E is the identity matrix: Eit/k i �9 k = Stamen. We have 

A23 = 1 Q A, Alz = A | 1 

Now we write the deformed product of the three one-forms. By a straightfor- 
ward computation, we get 

(0-1 ~ 0.2) ~ 0.3 = (E - A23 - AI2 + Az3AI2 + A12A23 - AI2Az3AI2)0.1 

0-2 ~ 0.3 (9a)  

0-1 ~ (0.2 ~ 0.3) = (E - AI2 - A23 + Az3A12 d- AI2A23 - A23AI2A23)0.1 

@ 0 -2 @ 0 -3 (9b) 
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The associativity of 7, is equivalent to the braid relation given by 

A12A23A12 = A23A12A23 (10) 

An arbitrary deformed p-form is then expressed by 

co(p) = coil...ipffil 7` o-i2 7` . . .  7` (~ip (11) 

where coi~...ip E C. 
Now we are in position to give the definition of the deformed exterior 

product on V as 

I~A(V) = G f~)(V),  fI~)(V) = C (12) 
p - 0  

rigA(V) is the space of the p-order deformed forms having the set {~il 7  ̀ . . .  
7  ̀o'ip} as a basis. 

3. GENERALIZATION TO THE CASE OF A MANIFOLD Mn 

In this section we will extend the previous construction to the case of 
a given finite-dimensional manifold Mn. As in the undeformed case, we 
introduce a differential calculus corresponding to the proposed deformation 
of the exterior algebra on Mn. We require d to satisfy the following: 

( i )  d 2 = 0 .  

(ii) d satisfies the graded Leibniz rule. 
(iii) The differential calculus is invariant under transformations 

x/--> r / 

where x" are the coordinates of a given point of Mn. 

This condition will be very interesting when we give the deformation 
on fl(Mn) below. One can remark that it is less restrictive than the invariance 
GLqi j required in Brzezinsld et al. (1992). The interpretation of this differential 
calculus in terms of the partial derivative of functions on Mn is given by 

d f ( . . . )  = ~ O f ( . . . ) d x  i (13) 
i= 1 

Following this scheme, we generalize equality (3) as 

dx i ~ dxY = dx i @ dx j - -  A~l dx k | dx  t (14) 

The associativity of 7  ̀ leads to the fact that A satisfies the braid equation 
(10). The construction of fIA(M~) will then be based on the definition of d 
given by (13) and satisfying the above conditions. We point out that the 
deformed wedge product 7  ̀can be seen as a generalization of the antisymmet- 
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ric one ^. Indeed, the differential operator d in (13) recovers the classical 
one if one takes A = P (P is the permutation operator). 

The natural generalization of the classical wedge product ^ can then be 
expressed by 

d x  i X dX j = - -S~ l  d x  k ,~ d x  I (15) 

where S is a given n 2 )< n 2 matrix, R --> ^ when S ---> P. 
Taking into account the relations (14)-(15), one has 

(El2  - S12)(Et2 + A12) = 0 (16) 

Surprisingly enough, this equation coincides with the one containing the 
defining differential calculus in Brzezinski et aL (1992). 

The most general matrix A satisfying (14) and (15) has the form 

A = ~ e i |  ~ q i j e j |  (17) 
i iq=j 

For the matrix S satisfying (16) and the braid relation (7, is associative), one 
can show that it can be expressed as 

S = ~ pie[ I @ ei + ~ qij4 @ eJ, I (18) 
i i~ j  

The construction of the deformedp from M~ will be given using the differential 
operator d. As for the case of vector space V [equation (12)], a general 
deformed p-form will be expressed by 

03~) ~- O)il...ip(Xl . . . . .  x n ) d x  il 7` d x  i2 7` . . .  7` d x  iP (19) 

where the coefficients O}il...i P are now functions on the variables x~ . . . . .  xn. 
By employing the relation (13), we express a deformed (p + l)-form by 

dto~ ) = Oioolil...ip(X 1 . . . . .  Xn) d x  iO A d x  il ~x " ' "  X d x  iP (20) 

At this step and by considering the proposed matrices A and S allowing the 
introduction of the exterior algebra fIA(Mn), we will discuss the consistency 
of d. In fact, the coordinates xil/= 1 ...... has been considered in the usual case 
[I-IA=p(Mn)] as commuting variables (C-number). However, if one chooses 
such that xix j = xJx i, the matrices A and S will reduce to P and the proposed 
differential calculus will be trivial. This point will be clarified when we will 
discuss the commutation relations between the variables and derivatives. 
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It has been proved that the solutions A and S [equations (17)-(18)] lead 
to the following commutation relations: 

x - x: x i ' x  j = q U M ' x  i 

X - -  dx:  x i ' d x i  = Pi  dXi  "x i  

x ~. dr: = - q j  dxJ .  x i 

dx - dx :  d x  i A d z  i = 0 

d x  ~ A d x  j = - q i j  dxJ ~ d x  ~ 

0 - -  X: ~ i ' X  i = 1 + p i  x i "  Oi, 

Oi .X j = L X j . O i  
qo 

c3 - -  dx :  Oi . d x  i = 1 d x i .  Oi 
Pi 

~ :  dxJ = I dxJ" ~ 
qij 

0 - -  O: 0 i" Oj "= qijOj" d i 

(21a) 

i~j 

(21b) 

(21c) 

(21d) 

(21e) 

In relations (21b) the product between the elements d x  - d x  is the exterior 
deformed wedge product. From the algebraic point of view it can be consid- 
ered as the dot �9 composing the other elements of the other equalities of (21). 
In what follows the operations X and �9 will be required to commute. 

4. q-ANALOGUE OF THE LEIBNIZ RULE 

We point out that the nilpotency condition on d is ensured by the 
equality qijqji = 1. Now, we present the analogue of the Leibniz rule for the 
exterior product, 

d(~ ^ -q) = d ~  ^ -q(-  1) d~ ^ d-q (22) 

where ~ and "q are arbitrary forms in X)(Mn). 
In the case of the deformed wedge product this expression is not obvious; 

however, we will give an equivalent of it. As in Wess and Zumino (1990), 
the functionsf(xj . . . . .  xn) at a given point of Mn are viewed as polynomials 
on the coordinates. This form of the functions of M~ allows us to introduce 
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the Leibniz rule corresponding to the deformed wedge product. Let us first 
discuss the case of two deformed one-forms t~A and "qA given by 

I]1 A -~" I~Jil(X 1 . . . . .  Xn)  d x  i! (23a) 

"qA = "qi~(xl . . . . .  xn) dM ~ (23b) 

The Leibniz rule corresponding to these forms is 

d(tll A 7, "qA) = d(d/il(Xl . . . .  , x . )  d x  i~ 7x "qjt(x~ . . . . .  x . )  dMO (24) 

where 

and 

I] / i I(Xl . . . . .  Xn)  = X a ~ l . . . p - n x ~ l  " ' "  X~nn 
~t,.-.,l~n 

"qjl(xl . . . . .  x,,) = ~ bvl. ,,,xy I " '" x~ n (25) 
VI,...,P n 

By a direct computation using the equalities (21) and the relations 

Oio(X~l " ' "  X~n n) 

n - I  
= X 8ioiq~o~lq~o~ z " ' "  "liontt-~n"7(I-P'i)12["]"l i_l,,,,ilqioil2Al-I ~V.l . . .  x ~ i - I  . . .  X~n n 

i=1  

+ [ ]  q~o~iX~iOio ( 2 6 )  
i=  1 

one can then get 

d(~A 7` "qA) 

= d ( ~ ]  " b x ~ ' ' " x ~ " d x i ' X x , ' ' " , " d x  j ' )  ~lXl...l~n Vl...Vn 1 (v)(~.) 

= ~ ,  a(~)b(~) q~i d(x~ ~ "'" x~"xr ~ " '"  x~" dx  i~ 7` dx  j '  
(v)(~) 

(v)(p,) l =  1 

= ~ a(~)bo,) qv[l~io qTo~, k" 
(v)(ix) I = 1 1 

• q(l-~kV2[~k]q;br~ -'" x, ~;-1 ' ' ' X ~ " X p  " "  Xy ;-~ " "  X~" 

+ ~ ,,-~k~.~k~ I ~ l  . . .  x~,)(dxiO 7` d x  q 7` dMl) (27) ~ ~k  Uiorv'~l 
k = l  
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and finally, we have 

d(~JA A ~IA) ---- blt~(qij) ~ "q(qij) + ( -1)deg*O(qi j )  7X b21q(qij) 

where 

b~(t~) = ~ ~ ~iOk q~o~ k' q(l-lxk)12[~k]qi-o~/2X~' " '"  x~i--I ' ' "  X~nn dx~~ 7X dx h 
(It,) k= 1 l 

T~(qij) = E ~ I  v! v l I., Vl . . .  xVi -1  dxJ l  qt:oqt, lU(v)Xl , " .  XVn . 
(v) /=1 

~(qij) = qioil E a(~) ~I q;-~k'X[ ~k 
(w) k= l 

bz'rl = E avOio(X~' "'" x~") dx i~ 7x dx j' (28) 
(v) 

It is easy to see from (28) that one recovers the usual Leibniz rule for the 
classical limit of the deformation parameters. 

This rule can be generalized to the case of two arbitrary forms ~ and 
% The operators b~ and b2, formally introduced, reduce to the usual one, d. 

5. CONCLUSION 

In this paper we give a consistent deformation of the exterior algebra 
on Mn. The latter has been constructed starting from a definition of the 
differential operator allowing (as for the classical case) obtaining 12~ij(Mn) 
for an arbitrary p. The introduction of d can be viewed as the construction 
of a noncommutative geometry (Manin, 1989) defined on a given quantum 
plane. In our context, the latter can be seen as the algebra A generated 
by the n coordinates Xili= 1 . . . . . .  . We note also that this deformation led to 
the construction of an A-bimodule like the one encountered in Woronovicz 
(1989). 

Elsewhere (Daoud et al., n.d.) the deformation of the phase space (x, 
P) is constructed using these basic tools. This deformation allows us to 
construct a differential realization in the context of intermediate statistics 
seen as a natural generalization of  supersymmetry using harmonic variables. 
We will discuss further the fractional spin notion by constraining the deforma- 
tion parameters q0" 
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